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 Drift-wave (DW) turbulence is ubiquitous in magnetized plasmas. In fusion science,
DW turbulence is actively studied because it affects plasma confinement.


 DW turbulence can spontaneously generate zonal flows (ZF), which are banded
shear flows with k‖ � 0. ZFs reduce turbulent transport but can be unstable.

2/26



PPPL, T169
Thursday, 08/08/2019, 10:45 AMSimple questions are still awaiting simple answers.


 Gyrokinetic simulations provide numerical data but basic physics is not entirely clear.

- What determines the ZF saturation/oscillations/merging, amplitudes, scales?

- What determines the ZF stability? How do ZFs suppress turbulence?

- What determines the propagating zonal structures seen in subcritical turbulence?

- How does electron-scale turbulence interact with ion-scale turbulence?...


 Analytic modeling is needed to develop robust qualitative understanding.
Gyrokinetic calculations are not intuitive. High-level theories can be advantageous.

Figures taken from Zhu et al. (2019) (left) and van Wyk et al. (2016) (right). 3/26
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Part 1: Interactions of electron-scale and ion-scale
turbulence (“cross-scale interactions”)

Why does ITG turbulence suppress ETG
turbulence, as seen in gyrokinetic simulations?

Part 2: Stability of zonal flows, nonlinear
suppression of DW turbulence, and the Dimits shift

What determines the stability of ZFs
in collisionless and collisional turbulence?
Minimal model of the tertiary instability and
the Dimits shift.

Figures taken from Maeyama et al. (2017) (upper) and Dimits et al. (2000) (lower). 4/26
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 I. Y. Dodin, H. Zhu, Y. Zhou, and D. E. Ruiz, Modeling drift-wave turbulence as quantumlike

plasma, in Proceedings of the 46th EPS Conference on Plasma Physics (Milan, Italy, 2019).


 H. Zhu, Y. Zhou, and I. Y. Dodin, Nonlinear saturation and oscillations of collisionless zonal

flows, New J. Phys. 21, 063009 (2019).


 Y. Zhou, H. Zhu, and I. Y Dodin, Formation of solitary zonal structures via the modulational

instability of drift waves, Plasma Phys. Control. Fusion 61, 075003 (2019).


 D. E. Ruiz, M. E. Glinsky, and I. Y. Dodin, Wave kinetic equation for inhomogeneous drift-wave

turbulence beyond the quasilinear approximation, J. Plasma Phys. 85, 905850101 (2019).


 H. Zhu, Y. Zhou, and I. Y. Dodin, On the Rayleigh–Kuo criterion for the tertiary instability of

zonal flows, Phys. Plasmas 25, 082121 (2018).


 H. Zhu, Y. Zhou, and I. Y. Dodin, On the structure of the drifton phase space and its relation

to the Rayleigh–Kuo criterion of the zonal-flow stability, Phys. Plasmas 25, 072121 (2018).


 H. Zhu, Y. Zhou, D. E. Ruiz, and I. Y. Dodin, Wave kinetics of drift-wave turbulence and zonal

flows beyond the ray approximation, Phys. Rev. E 97, 053210 (2018).


 D. E. Ruiz, J. B. Parker, E. L. Shi, and I. Y. Dodin, Zonal-flow dynamics from a phase-space

perspective, Phys. Plasmas 23, 122304 (2016).
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 Gyrokinetic simulations show that low-k ITG turbulence can suppress high-k ETG
turbulence. For example, see Maeyama et al., PRL (2015):

Our goal is to explain this effect within the simplest meaningful model.

Maeyama et al. (2017); Howard et al. (2016); Maeyama et al. (2015) . . . 6/26
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Basic physics of DW turbulence is often studied within the Hasegawa–Mima model:

Btw � tϕ,wu � βBxϕ � 0, w � p∇2 � paqϕ, β � ByN

Electrons respond adiabatically to drift waves (k‖ � 0) and do not respond to zonal
flows (ZFs), which are spontaneously-generated banded shear flows with k‖ � 0.

wdw � p∇2 � 1qϕdw, wzf � ∇2ϕzf

Hammett et al. (1993); Krommes and Kim (2000) . . . 7/26
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 The quasilinear approximation is sufficiently accurate to capture basic effects.

average: BtU � Byṽxṽy � 0, ṽ � pz�∇ϕ̃, w̃ � p∇2 � 1qϕ̃
fluctuations: Btw̃ � UBxw̃ � rβ � pB2yUqsBxϕ̃ � ṽ �∇w̃ � ṽ �∇w̃loooooooooomoooooooooon

neglected (QL model)


 The equation for w̃ can be expressed as a Schrödinger equation for “driftons”:

iBtw̃ � pHw̃ � , pH � pkx pU � pkxpβ � pU 2qp1 � pk2Kq�1, pk .� �i∇

Ruiz et al. (2016); Zhou et al. (2019) 8/26
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 Simulations show that ZFs exhibit substantial
merging in multi-scale turbulence.

Claim: this merging is the cause of the high-k
turbulence demise and a generic property of

multi-scale turbulence.


 To show this, some theory will be needed:

- general wave-kinetic theory,

- topology of the drifton phase-space,

- approximate closure for U ,

- conditions for ZF merging.


 We will also argue that the physics beyond the
quasilinear approximation is not very different.

10/26
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 The Wigner function W pt, y,kq .� ³
d2s e�ik�sxw̃pt,x� s{2qw̃pt,x� s{2qy (i.e., the

spectrum of the two-point correlator, or “quasiprobability distribution”) satisfies
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 Geometrical-optics limit: improved wave kinetic equation (iWKE) with new terms:
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Ruiz et al. (2016); Parker (2016) ; cf. Smolyakov and Diamond (1999); Krommes and Kim (2000) . . . 11/26
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 Let us rewrite the iWKE in the following form using the group velocity vg:

BW
Bt � B

By pWvgq � B
Bky

�
W

BHH

By


� U3

β � U 2
Wvg, vg � 2kxky

p1 � k2Kq2
pβ � U 2q


 By integrating the iWKE over k, one obtains an equation for the drifton density.
The term on the right can be neglected compared to ByJ when U 2 ! β.

BtN � ByJ � �JU3{pβ � U 2q, N
.� ³

W d2k, J
.� ³

Wvg d2k


 In this “quasistatic” limit, U becomes a local
function of N (“equation of state”):

BU
Bt � B

By
�

J

2pβ � U 2q
�
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2β
� �BtN

2β

U � �N
2β

� const

For quasimonochromatic turbulence as a special case, we discussed this in Zhou et al. (2019) . 12/26
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 The iWKE is only marginally applicable to ZF
formation but can explain it qualitatively.

H � kxp�β � U 2q
1 � k2x � k2y

� kxU, U � �N
2β

� const�

k2y ! 1 � k2x, q2
.� �U 2{U, kx � const
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.� 2β2
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.�
�

q2

1 � k2x
� 1



N

2


 If q2   1 � k2x, driftons reside near minima of V , so the system is stable.


 If q2 ¡ 1� k2x, driftons reside near maxima of V . The system can lower the energy
by bifurcating to a lower-q state, so it is unstable to ZF merging.

� Here, we assume U2 À β. Unlike in single-scale turbulence, this does not rule out q Á kx. 13/26
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 In single-scale turbulence, q corresponds to the maximum of γsecondary. Then,
there are passing and/or trapped trajectories, and many driftons survive.

q � min
 
k2x
?
N{β,

a
1 � k2x

(
, U À Uc1


 Low-k waves cause ZFs to merge down to q2 � 1 � k2x. High-k waves become
runaways and dissipate. Low-k waves remain passing because Uc1 � Uc1pkxq.

Zhu et al. (2019) 14/26
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 The scale separation persists in the poloidal-k space.


 In the radial-k space, the scales are determined by the ZFs, which start at the
electron scale and then merge down to the ion scale.


 During the ZF merging, most high-k driftons become runaways and dissipate.

Quasilinear simulations for two different ratios kx2{kx1 16/26
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 Drifton collisions serve as an additional channel though which high-k driftons
become runaways. Other than that, the effect remains the same.

Summary: the demise of high-k turbulence via cross-scale interactions is
robustly explained as a phase-space effect in the Hasegawa–Mima model.

17/26
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 In the Hasegawa–Mima model, the drifton Hamiltonian is pseudo-Hermitian,
resulting in an instability of the Kelvin–Helmholtz type. (But is it relevant?)

iBtw̃ � pHw̃, pH � kx pU � kxpβ � pU 2qp1 � k2x � pk2yq�1

γTI � |kxU0|
�

1 � 1 � k2x
q2


d
1 � β2

U2
0q

4

Zhu et al. (2018)a; Zhu et al. (2018)c ; cf. Kuo (1949); Numata et al. (2007); Kim and Diamond (2002) 18/26
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Btw � tϕ,wu � βByϕ� pDw
w � p∇2 � pa� ipδqϕpδ � δppkyqloooomoooon

primary instability

, pD � 1 � κ∇2looooooomooooooon
friction & viscosity


 The “Hasegawa–Mima” TI mode becomes localized + other localized modes appear.

iBtw̃ � pHw̃, pH � ky pU � kypβ � pU 2qr1 � pk2x � k2y � iδpkyqs�1� i pD

For this modified Terry–Horton model, see St-Onge (2017) . The function δpkyq can be anything. 19/26
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 The largest growth rates belong to the lowest-order modes. Those are localized
in px, kxq, so the drifton Hamiltonian can be approximated with its Taylor expansion:

BtW � ttHH,W uu � rrHA,W ss ñ truncate H ñ pH � c0 � c1px2 � c2pk2x


 This yields an equation of a quantum harmonic oscillator with complex coefficients:�
�ϑ2 d2

dx2
� x2



w̃ � εw̃ ñ w̃n � Hn

�
x?
ϑ



e�x

2{2ϑ, εn � p2n� 1qϑ

ϑ
.� �i

a
2p1 � β{U 2

0q
1 � k2y � iδ

, ε
.� 2

kyU 2
0

�
ωTI � kyU0 � iD0 � kypβ � U 2

0q
1 � k2y � iδ

�

20/26
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γTI � �D0 � Im

�
kypβ � U 2

0q � ikyU
2
0

ap1 � β{U 2
0q{2

1 � k2y � iδ

�

Upper: analytic formula. Lower: numerical simulations + an alternative theory with a fitting parameter (not shown). 21/26
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γTI � �D0 � Im

�
kypβ �U 2

0q � ikyU
2
0

ap1 � β{U 2
0q{2

1 � k2y � iδ

�
� γ

plinearq
primary � ∆γpU 2

0q


 The tertiary instability can be viewed as the primary instability modified by ZFs.

- If γTI   0, turbulence is suppressed; ZFs survive, assuming D̂ acts only on DWs.

- If γTI ¡ 0, the system ends up in a turbulent state.

- Due to ∆γ, the transition to the turbulent state occurs at plasma parameters
different from those without ZFs. This is called the Dimits shift.

The figures are taken from Dimits et al. (2000) and St-Onge (2017) . 22/26
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 We calculate the values of β that correspond to γ
plinearq
primary � 0 and γTI � 0 using

U 2
0 � q2Uc1. The difference between these values is the Dimits shift (shaded).


 Compared with a related calculation by St-Onge (2017), our model is a better
fit at both large and small δ. For example, it has no spurious cutoff at δ � 2.

βc �
Drp1 � k2yq2 � δ2s{ky
δ � p1 � k2yq

a
U 2
0{2β

,
U 2
0

β
� q2

k2y � 1

St-Onge (2017) used four-mode truncation (somewhat a stretch, also not intuitive) and did not calculate the Dimits shift per se. 23/26
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 Studying drift-wave turbulence in phase space requires:

- looking beyond geometrical optics: do not neglect λ{L and U 2{β,

- deriving WME/WKE from first principles: hand-waving leads to errors.


 Cross-scale interactions within the Hasegawa–Mima model:

- Zonal flows tend to merge when there are driftons with kθ À q.

- Zonal-flow merging gradually reduces the DW radial scale.

- High-kθ DWs are efficiently dissipated during this process.


 Tertiary instabilities and the Dimits shift:

- Dissipation localizes the tertiary modes near the ZF-velocity extrema.

- The growth rate of these modes can be made negative by U 2 ñ Dimits shift.

- An analytic theory is developed within the Terry–Horton model.

- Two-fluid models have additional features.


 Drift-wave solitons in subcritical turbulence

24/26
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